Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 200: 105843, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582603

RESUMO

Isoxazoline is a novel structure with strong potential for controlling agricultural insect pests, but its high toxicity to honeybees limits its development in agriculture. Herein, a series of N-phenylamide isoxazoline derivatives with low honeybee toxicity were designed and synthesized using the intermediate derivatization method. Bioassay results showed that these compounds exhibited good insecticidal activity. Compounds 3b and 3f showed significant insecticidal effects against Plutella xylostella (P. xylostella) with median lethal concentrations (LC50) of 0.06 and 0.07 mg/L, respectively, comparable to that of fluralaner (LC50 = 0.02 mg/L) and exceeding that of commercial insecticide fluxametamide (LC50 = 0.52 mg/L). It is noteworthy that the acute honeybee toxicities of compounds 3b and 3f (LD50 = 1.43 and 1.63 µg/adult, respectively) were significantly reduced to 1/10 of that of fluralaner (LD50 = 0.14 µg/adult), and were adequate or lower than that of fluxametamide (LD50 = 1.14 µg/adult). Theoretical simulation using molecular docking indicates that compound 3b has similar binding modes with fluralaner and a similar optimal docking pose with fluxametamide when binding to the GABA receptor, which may contribute to its potent insecticidal activity and relatively low toxicity to honey bees. This study provides compounds 3b and 3f as potential new insecticide candidates and provides insights into the development of new isoxazoline insecticides exhibiting both high efficacy and environmental safety.


Assuntos
Inseticidas , Mariposas , Abelhas , Animais , Inseticidas/toxicidade , Inseticidas/química , Simulação de Acoplamento Molecular , Insetos , Receptores de GABA/metabolismo , Amidas/toxicidade , Mariposas/metabolismo
2.
J Agric Food Chem ; 72(7): 3456-3468, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38331710

RESUMO

A series of arylfluorosulfates were synthesized as fungicide candidates through a highly efficient sulfur fluoride exchange (SuFEx) reaction. A total of 32 arylfluorosulfate derivatives with simple structures have been synthesized, and most of them exhibited fungal activities in vitro against five agricultural pathogens (Rhizoctonia solani, Botrytis cinerea, Fusarium oxysporum, Pyricularia oryzae, and Phytophthora infestans). Among the target compounds, compound 31 exhibited great antifungal activity against Rhizoctonia solani (EC50 = 1.51 µg/mL), which was comparable to commercial fungicides carbendazim and thiabendazole (EC50 = 0.53 and 0.70 µg/mL, respectively); compounds 17 and 30 exhibited antifungal activities against Pyricularia oryzae (EC50 = 1.64 and 1.73 µg/mL, respectively) comparable to carbendazim (EC50 = 1.02 µg/mL). The in vitro antifungal effect of compound 31 was also evaluated on rice plants against Rhizoctonia solani. Significant preventive and curative efficacies were observed (89.2% and 91.8%, respectively, at 200 µg/mL), exceeding that of thiabendazole. Primary study on the mechanism of action indicated that compound 31 could suppress the sclerotia formation of Rhizoctonia solani even at a very low concentration (1.00 µg/mL), destroy the cell membrane and mitochondria, trigger the release of cellular contents, produce excessive reactive oxygen species (ROS), and suppress the activity of several related enzymes. This work could bring new insights into the development of arylfluorosulfates as novel fungicides.


Assuntos
Ascomicetos , Benzimidazóis , Carbamatos , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Antifúngicos/farmacologia , Antifúngicos/química , Relação Estrutura-Atividade , Tiabendazol , Rhizoctonia , Plantas
3.
J Agric Food Chem ; 71(39): 14211-14220, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37737111

RESUMO

To develop highly effective, nontarget organism-friendly insecticides based on the isoxazoline scaffold, we rationally designed and synthesized 25 isoxazoline derivatives containing sulfonamides and sulfinamides. Their insecticidal activities against the diamondback moth (Plutella xylostella), fall armyworm (Spodoptera frugiperda), beet armyworm (Spodoptera exigua), and Spodoptera litura Fabricius (S. litura) were evaluated. The trifluoromethyl sulfinamide-containing compound 7w displayed excellent activities with LC50 values being 0.09, 0.84, 0.87, and 0.68 mg/L against P. xylostella, S. frugiperda, S. exigua, and S. litura, respectively, which were superior to fluxametamide (LC50 = 0.09, 1.24, 1.10, and 0.65 mg/L, respectively) and maintained at the same order of magnitude LC50 values as fluralaner (LC50 = 0.02, 0.17, 0.12, and 0.19 mg/L, respectively). Importantly, compound 7w showed a medium toxicity level of acute toxicity to honeybee (LD50 = 2.22 µg/adult), which is significantly lower than the fluralaner (high toxicity level, LD50 = 0.09 µg/adult). Acute toxicity experiments with zebrafish (Danio rerio) indicated that compound 7w was safe with the LC50 value being 42.4 mg/L (low toxicity level). Furthermore, electrophysiological experiments and molecular docking studies preliminarily verified that compound 7w acts on the insect GABA receptor, and the theoretical calculations explained that the sulfinamide structure may play an important role in exhibiting biological activities. The above results suggest that compound 7w could be employed as a potentially highly effective, environmentally friendly insecticide to control multiple agricultural pests.


Assuntos
Inseticidas , Mariposas , Abelhas , Animais , Inseticidas/toxicidade , Inseticidas/química , Peixe-Zebra , Receptores de GABA , Simulação de Acoplamento Molecular , Spodoptera , Sulfonamidas/toxicidade , Larva
4.
J Agric Food Chem ; 71(30): 11491-11501, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37478461

RESUMO

Bruceine D (BD) is an effective insecticidal compound found in the Chinese herb Brucea javanica (L.) Merr. BD inhibits the growth and metamorphosis of Plutella xylostella and Drosophila melanogaster; however, its target protein and the molecular mechanism of insecticidal activity remain unclear. In this study, proteins with high affinity for BD were screened using surface plasmon resonance and high-performance liquid chromatography coupled with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, revealing the ecdysone receptor (EcR) is the main target of BD. In vivo results showed that BD inhibited insect growth and metamorphosis through inhibition of the expression of 20E response genes. In vitro dual luciferase and enhanced green fluorescent protein (EGFP) fluorescence experiments indicated that BD suppressed the transcriptional activation activity of EcR by blocking the ecdysone response element (EcRE)-triggered transcriptional cascade, suggesting that BD inhibits the formation of the 20E-EcR-USP-EcRE complex. Moreover, molecular docking demonstrated that BD bound well to EcR. Elucidating the insecticidal mechanism of BD will be helpful in the development of green pesticides to control pests.


Assuntos
Proteínas de Drosophila , Inseticidas , Animais , Ecdisona/metabolismo , Drosophila melanogaster/metabolismo , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Transdução de Sinais , Proteínas de Drosophila/metabolismo , Ecdisterona/metabolismo , Ecdisterona/farmacologia
5.
Pest Manag Sci ; 79(10): 4018-4024, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37278576

RESUMO

BACKGROUND: Conjugating amino acid moieties to active ingredients has been recognized as an effective method for improving the precise targeting of the active form to the specific site. Based on the vectorization strategy, a series of amino acid-tralopyril conjugates were designed and synthesized as novel proinsecticide candidates, with the potential capability of root uptake and translocation to the foliage of crops. RESULTS: Bioassay results showed excellent insecticidal activities of some conjugates, in particular, the conjugates 6b, 6e, and 7e, against the diamondback moth (Plutella xylostella), with equivalent insecticidal activity to chlorfenapyr (CFP). Importantly, conjugate 6e exhibited significantly higher in vivo insecticidal activity against P. xylostella than CFP. Furthermore, the systemic test experiments with Brassica chinensis demonstrated that conjugates 6e and 7e could be transported to the leaves, in contrast to CFP, which remained in the root. CONCLUSION: This study demonstrated the feasibility of amino acid fragment conjugation as a vectorization strategy for transporting non-systemic insecticides into the leaves of B. chinensis while maintaining in vivo insecticidal activity. The findings also provide insights for subsequent mechanism studies on the uptake and transport of amino acid-insecticide conjugates in plants. © 2023 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Animais , Aminoácidos/química , Inseticidas/química , Agroquímicos/química , Mariposas/metabolismo , Larva
6.
J Agric Food Chem ; 71(19): 7250-7257, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37134096

RESUMO

In our previous study, a series of novel pyrazoloquinazolines were synthesized. Pyrazoloquinazoline 5a showed high insecticidal activity against the diamondback moth (Plutella xylostella) and no cross-resistance to fipronil. Patch clamp electrophysiology performed on P. xylostella pupae brains and two-electrode voltage clamp electrophysiology performed on Xenopus Laevis oocytes indicated that 5a might act on the ionotropic γ-aminobutyric acid (GABA) receptor (GABAR) and glutamate-gated chloride channel (GluCl). Moreover, 5a's potency on PxGluCl was about 15-fold higher than on fipronil, which may explain why there was no cross-resistance between 5a and fipronil. Downregulation of the PxGluCl transcription level significantly enhanced the insecticidal activity of 5a on P. xylostella. These findings shed light on the mode of action of 5a and provide important insights into the development of new insecticides for agricultural applications.


Assuntos
Inseticidas , Canais Iônicos de Abertura Ativada por Ligante , Mariposas , Animais , Mariposas/genética , Cloretos , Ligantes , Inseticidas/farmacologia , Canais de Cloreto/genética , Receptores de GABA , Resistência a Inseticidas
7.
Pest Manag Sci ; 79(3): 1164-1174, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36371599

RESUMO

BACKGROUND: Arylpyrazole insecticides display broad-spectrum insecticidal activity against insect pests. However, the high toxicity toward honeybees associated with fipronil prohibits its agronomic utility. To explore reducing the toxicity of aryl pyrazole analogs to bees, a series of new spiro-pyrazolo[1,5-a]quinazoline derivatives were designed and synthesized. RESULTS: Bioassay results showed that these compounds exhibited good insecticidal activity. In particular, the insecticidal activity of compound 5f against Plutella xylostella larvae (median lethal contentration, LC50  = 1.43 mg L-1 ) was equivalent to that of fipronil. Moreover, some compounds also showed good insecticidal activity against Solenopsis invicta. Importantly, the bee toxicity study confirmed that compound 5f had much lower acute oral toxicity, with a median lethal dose (LD50 ) = 1.15 µg bee-1 that was three to four orders of magnitude greater than that of fipronil (0.0012 µg bee-1 ). Electrophysiological studies were conducted using honeybee γ-aminobutyric acid receptor heterologously expressed in Xenopus oocytes to explain the reduced bee toxicity of compound 5f. The inhibitory effect of compound 5f (16.29 µmol L-1 ) was determined to be approximately 700-fold lower than that of fipronil (0.023 µmol L-1 ). CONCLUSION: These spiro-pyrazolo[1,5-a]quinazoline derivatives could be potential candidates and lead structures for the discovery of novel insecticides with low bee toxicity. © 2022 Society of Chemical Industry.


Assuntos
Inseticidas , Lepidópteros , Mariposas , Abelhas , Animais , Inseticidas/química , Quinazolinas/farmacologia , Insetos , Larva
8.
J Agric Food Chem ; 70(50): 15981-15989, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36510782

RESUMO

In view of the lethal toxicity of paraquat (PQ) on human health, herein, a simple indicator displacement assay (IDA) based on an azo-modified calixarene host (azoCX[4]) and a fluorophore guest (p-DPD) were elaborately constructed for PQ detection in environmental water samples and plant surfaces. The fluorescent signal of p-DPD in the probe can be quenched by azoCX[4] through a photon-induced electron transfer process and recovered upon the addition of PQ within 10 s. The detection range of the p-DPD@azoCX[4] probe was calculated to be 0.35-8 µM in the Tris-HCl buffer solutions (pH = 7.4). Moreover, this probe exhibited excellent detection selectivity toward PQ over five herbicides (glyphosate, bispyribac, atrazine, ametryn, and bensulfuron methyl), together with anti-interference abilities in the presence of inorganic ions (K+, Na+, Zn2+, Ni2+, Li+, F-, Cl-, Br-, CO32-, HCO3-, and NO3-) and amino acids (Asp, Arg, Glu, Ala, and Cys). Particularly, the probe was successfully used to detect PQ in real water samples with acceptable accuracy and showed potential applications for on-site detection with paper-based test strips and on the leaf surface. We believe that this simplified IDA-based probe provided an effective detecting tool for PQ, and the design strategy would guide the further development of new IDA sensing systems.


Assuntos
Atrazina , Herbicidas , Humanos , Paraquat/química , Herbicidas/toxicidade , Corantes Fluorescentes/química , Íons , Água
9.
ACS Sens ; 7(7): 2020-2027, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35776632

RESUMO

The massive use of pesticides nowadays has led to serious consequences for the environment and public health. Fluorescence analytical methods for pesticides are particularly advantageous with respect to simplicity and portability; however, currently available fluorescence methods (enzyme-based assays and indicator displacement assays) with poor universality are only able to detect few specific pesticides (e.g., organophosphorus). Making use of the multiple flexible and asymmetrical binding sites in albumin, we herein report a set of multicolor albumin-based host-guest ensembles. These ensembles exhibit a universal but distinctive fluorescent response to most of the common pesticides and allow array-based identification of pesticides with high accuracy. Furthermore, the simplicity, portability, and visualization of this method enable on-site determination of pesticides in a practical setting. This albumin host strategy largely expands the toolbox of traditional indicator displacement assays (synthetic macrocycles as hosts), and we expect it to inspire a series of sensor designs for pesticide detection.


Assuntos
Praguicidas , Albuminas
10.
Org Lett ; 24(6): 1341-1345, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35129989

RESUMO

Herein we report the first versatile and expeditious method for the site-selective C-H fluoromethylation of aryl iodides via Pd/norbornene cooperative catalysis, which could work as a robust toolbox for the diversity-oriented synthesis (DOS) of fluoromethylated arenes. This methodology features the use of the low-cost industrial raw material CH2IF as the fluoromethyl source, an excellent functional group tolerance, and a broad ipso termination scope and can be expanded to the late-stage modification of biorelevant molecules.

11.
Environ Sci Pollut Res Int ; 26(36): 36680-36687, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31741272

RESUMO

Transporters play an important role in the uptake and redistribution of agrochemicals to the site of insect feeding. The product of the Arabidopsis thaliana gene AtAAP1 substantially contributes to inorganic nitrogen acquisition under ecologically relevant amino acid concentrations. Here, the transporter ability of AtAAP1 to a chlorantraniliprole-alanine conjugate (CAP-Ala-1) was tested both in planta and in vitro. Thirty-day-old and 15-day-old plants overexpressing AtAAP1 increased the uptake of CAP-Ala-1 into the roots, whereas AtAAP1 deficiency did not completely block the uptake of CAP-Ala-1. An uptake experiment carried out in Xenopus laevis oocytes expressing AtAAP1 showed that CAP-Ala-1 interacted with AtAAP1. Although little native AtAAP1 transcription was present in the leaves, constitutive expression of AtAAP1 in plants significantly increased the ability of the leaf mesophyll protoplasts to take up CAP-Ala-1. The observations supported the possibility of exploiting AtAAP1 as a component of a novel delivery and redistribution system for amino acid-based pesticide conjugates.


Assuntos
Alanina/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , ortoaminobenzoatos/metabolismo , Alanina/química , Sistemas de Transporte de Aminoácidos Neutros/deficiência , Animais , Transporte Biológico/genética , Expressão Gênica , Inseticidas/química , Inseticidas/metabolismo , Oócitos/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Protoplastos/metabolismo , Xenopus laevis , ortoaminobenzoatos/química
12.
RSC Adv ; 9(6): 3403-3406, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35518944

RESUMO

DMSO was found to activate arylisothiocyanates for self-nucleophilic addition. A subsequent intramolecular C-H sulfurization catalyzed by PdBr2 enables access to a wide range of 2-aminobenzothiazole derivatives in moderate to good yields. This is the first example of a DMSO-mediated Pd-catalyzed synthesis of 2-aminobenzothiazoles through cyclization/C-H sulfurization of two isothiocyanates.

13.
Molecules ; 23(12)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558133

RESUMO

1,1,1,3,3,3-Hexafluoropropan-2-ol (HFIP) was found to be effective for the Bischler indole synthesis under microwave irradiation in the absence of a metal catalyst. Under the catalysis of HFIP, a wide range of α-amino arylacetones were successfully transformed into indole derivatives with moderate to good yields.


Assuntos
Indóis/química , Micro-Ondas , Catálise , Ciclização , Estrutura Molecular
14.
J Agric Food Chem ; 66(47): 12527-12535, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30403859

RESUMO

Understanding of the transporters involved in the uptake and translocation of agrochemicals in plants could provide an opportunity to guide pesticide to the site of insect feeding. The product of Arabidopsis thaliana gene AtLHT1 makes a major contribution to the uptake into the roots of free amino acids and some of their derivatives. Here, a chlorantraniliprole-glycine conjugate (CAP-Gly-1) was tested for its affinity to AtLHT1 both in planta and in vitro. Seedlings deficient in AtLHT1 exhibited a reduction with respect to both the uptake and root-to-shoot transfer of CAP-Gly-1; plants in which AtLHT1 was constitutively expressed were more effective than wild type in term of their root uptake of CAP-Gly-1. Protoplast patch clamping showed that the presence in the external medium of CAP-Gly-1 was able to induce AtLHT1 genotype-dependent inward currents. An electrophysiology-based experiment carried out in Xenopus laevis oocytes expressing AtLHT1 showed that AtLHT1 had a high in vitro affinity for CAP-Gly-1. The observations supported the possibility of exploiting AtLHT1 as a critical component of a novel delivery system for amino acid-based pesticide conjugates.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicina/metabolismo , Inseticidas/metabolismo , ortoaminobenzoatos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Glicina/química , Inseticidas/química , Oócitos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Xenopus laevis , ortoaminobenzoatos/química
15.
Pest Manag Sci ; 73(10): 2131-2137, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28432729

RESUMO

BACKGROUND: Conjugating amino acid and glucose fragments with existing pesticide structures has been shown to be an effective way to introduce phloem mobility into non-phloem mobile species. However, the resulting derivatives always suffer from lower bioactivity compared with their parent compound. To solve this problem, we designed and synthesised a series of ester-capped amino-acid-conjugated chlorantraniliproles. RESULTS: The systemic test showed that all conjugates exhibited excellent phloem mobility and xylem mobility in a Ricinus communis model. In particular, compounds 7b, 8b and 8c were able to accumulate in phloem tissues in the form of their hydrolysis products, and the concentrations in phloem sap can reach 3 times the concentration in the incubation medium. Although their insecticidal activity (LC50 ) against the beet armyworm (Spodoptera exigua) in vitro was weaker than that of chlorantraniliprole, compounds 7b, 8b and 8c showed similar insecticidal activity in vivo against beet armyworm compared with the parent compound. CONCLUSIONS: This work provides a potential strategy to obtain pesticide derivatives that possess both improved uptake and improved mobility in crops while retaining the in vivo insecticidal effect of the parent compound. © 2017 Society of Chemical Industry.


Assuntos
Inseticidas/química , Ricinus/metabolismo , Spodoptera/efeitos dos fármacos , ortoaminobenzoatos/química , Aminoácidos/síntese química , Animais , Transporte Biológico , Ésteres/síntese química , Inseticidas/síntese química , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Floema/metabolismo , Spodoptera/crescimento & desenvolvimento , Xilema/metabolismo
16.
J Agric Food Chem ; 60(24): 6088-94, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22587652

RESUMO

Some compounds containing glucose are absorbed via the monosaccharide transporters of the plasma membrane. A glucose-fipronil conjugate, N-[3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazol-5-yl]-1-(ß-d-glucopyranosyl)-1H-1,2,3-triazole-4-methanamine (GTF), has been synthesized in our previous work. GTF exhibits moderate phloem mobility in Ricinus communis. In the current paper, we demonstrate that the uptake of GTF by Ricinus seedling cotyledon discs is partly mediated by an active carrier system (K(m)1 = 0.17 mM; V(max)1 = 2.2 nmol cm(-2) h(-1)). Four compounds [d-glucose, sucrose, phloridzin, and carbonyl cyanide m-chlorophenylhydrazone (CCCP)] were examined for their effect on GTF uptake. Phloridzin as well as CCCP markedly inhibit GTF uptake, and d-glucose weakly competes with it. The phloem transport of GTF in Ricinus seedlings is found to involve an active carrier-mediated mechanism that effectively contributes to the GTF phloem loading. The results prove that adding a glucose core is a reasonable and feasible approach to confer phloem mobility to fipronil by utilizing plant monosaccharide transporters.


Assuntos
Glucose/metabolismo , Inseticidas/metabolismo , Floema/metabolismo , Pirazóis/metabolismo , /metabolismo , Transporte Biológico , Cotilédone/metabolismo , Glucosídeos/metabolismo , Modelos Biológicos , Proteínas de Transporte de Monossacarídeos/metabolismo , Plântula/metabolismo , Triazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...